Mensuration

Q1) The radius and height of a cylinder are in ratio 5:7 and its volume is $4400 \mathrm{~m}^{3}$. Find its radius.

Q2)The dimensions of a cuboid are in ratio 4:2:5. Its volume is $29,160 \mathrm{cu} \mathrm{m}$. Find its surface area.

Q3) The length of a hall is 18 m and width is 13.5 m . Find the least number of square tiles each of side 25 cm , required to cover the floor of the hall.
i) without leaving the margin .
ii) leaving the margin of 1.5 m all around.

Q4) A wire, when bent in the form of a square, encloses an area of $196 \mathrm{~cm}^{2}$. If the same wire is bent to form a circle find the area of the circle.

Q5) The Diameter of the road roller is 1.4 m and it is 2 m long. Find the area of road covered in 45 revolutions. Find the cost of construction if rate is ₹110per m^{2}

Q6) Area of a rhombus is $96 \mathrm{~cm}^{2}$ whose one diagonal is 16 cm . Find its height.
Q7)Find the area of each section of a frame as shown in the figure, if width of each section is equal.

Q8)A metal cube of side 11 cm is completely submerged in water contained in a cylindrical vessel with the diameter 28 cm . Find the rise in the level of water.

Answer Key

Q1) The radius and height of a cylinder are in ratio 5:7 and its volume is $4400 \mathrm{~m}^{3}$. Find its radius.

Sol) Let radius $=5 x$ and Height $=7 x$
Now Volume $=\pi r^{2} h$
i.e. $4400=\frac{22}{7} \times 5 x \times 5 x \times 7 x$
$4400=22 \times 25 x^{3}$
$x^{3}=\frac{4400}{22 \times 25}=8$
$x=2$
radius $=10 \mathrm{~m}$

Q2)The dimensions of a cuboid are in ratio 4:2:5. Its volume is $29,160 \mathrm{cu} \mathrm{m}$. Find its surface area.

Sol)
Let $L=4 x, B=2 x$ and $H=5 x$
now, volume $=L B H=29160=4 x \times 2 x \times 5 x=40 x$
$x^{3}=729$
$x=9$
Now, $\mathrm{TSH}=2(l b+b h+l h)$
$=2(4 x \times 2 x+2 x \times 5 x+4 x \times 5 x)$
$=2\left(38 x^{2}\right)=76 x$
$=76 \times 81=6156 \mathrm{~m}^{2}$

Q3) The length of a hall is 18 m and width is 13.5 m . Find the least number of square tiles each of side 25 cm , required to cover the floor of the hall.
i) without leaving the margin .
ii) leaving the margin of 1.5 m all around.

Sol) Area of hall $=18 \times 13.5=243 \mathrm{~m}^{2}$
Area of one tile $=25 \times 25=625 \mathrm{~cm}^{2}=0.0625 \mathrm{~m}^{2}$

Area of hall after leaving margins $=15 \times 10.5=157.5 \mathrm{~m}^{2}$
i) Number of tiles required without margin $=\frac{243}{0.0625}=3888$
ii) Number of tiles required with margin $=\frac{157.5}{0.0625}=2520$

Q4) A wire, when bent in the form of a square, encloses an area of $196 \mathrm{~cm}^{2}$. If the same wire is bent to form a circle find the area of the circle.

Sol) Area of square $=196 \mathrm{~cm}^{2}$, Side $=14 \mathrm{~cm}$
Perimeter $=4 \mathrm{~s}=4 \times 14=56 \mathrm{~cm}$
\therefore length of wire $=56 \mathrm{~cm}=$ circumference of circle
$2 \pi r=56, r=\frac{56}{2 \pi}$
Area of circle $=\pi r^{2}=\pi \times \frac{56}{2 \pi} \times \frac{56}{2 \pi}=\frac{56 \times 56}{4 \pi}$
$=\frac{56 \times 56 \times 7}{4 \times 22}=249.45 \mathrm{~cm}^{2}$

Q5) The Diameter of the road roller is 1.4 m and it is 2 m long. Find the area of road covered in 45 revolutions. Find the cost of construction if rate is $₹ 110$ per m^{2}

Sol)
Area covered in one revolution = circumference of road roller x length of Road roller

Circumference of road roller $=2 \times \frac{22}{7} \times 0.7=4.4 \mathrm{~m}$
Area covered in one revolution $4.4 \times 2=8.8 \mathrm{~m}^{2}$
Area of road covered in 45 revolutions $=8.8 \times 45=39.6 \mathrm{~m}^{2}$
cost of construction $=110 \times 39.6=₹ 4356$

Q6) Area of a rhombus is $96 \mathrm{~cm}^{2}$ whose one diagonal is 16 cm . Find its height.

Sol) Area of Rhombus $=\frac{1}{2} d 1 \times d 2 \Rightarrow$
$\frac{16}{2} \times d 2=96$,
$d 2=12 \mathrm{~cm}, A O=6 \mathrm{~cm}$ and $B O$
$=8 \mathrm{~cm}$
By Pythagoras theorem, $A B=10 \mathrm{~cm}$

Now area of rhombus is $b \times h$, where $b=A B=10 \&$ area $=96 \mathrm{~cm}^{2}$
$h=\frac{96}{10}=9.6 \mathrm{~cm}$

Q7)Find the area of each section of a frame as shown in the figure, if width of each section is equal.

Sol) Area of Trapezium $=\frac{1}{2} h(p 1+p 2)$

Height of Trapezium $=$ Width $=(28-20) / 2=4$ units
Area of Section(Trapezium) $1=\frac{1}{2} \times h \times(p 1+p 2)=\frac{1}{2} \times 4(20+28)=96$ sq unit
Area of Section(Trapezium) $2=\frac{1}{2} \times h \times(p 1+p 2)=\frac{1}{2} \times 4(24+16)=80$ sq unit
Area of Section(Trapezium) 3 $=\frac{1}{2} \times h \times(p 1+p 2)=\frac{1}{2} \times 4(20+28)=96$ sq unit
Area of Section(Trapezium) $4=\frac{1}{2} \times h \times(p 1+p 2)=\frac{1}{2} \times 4(24+16)=80$ sq unit

Q8)A metal cube of side 11 cm is completely submerged in water contained in a cylindrical vessel with the diameter 28 cm . Find the rise in the level of water.

Sol) Volume of cube $=11 \times 11 \times 11=1331 \mathrm{~cm}^{3}$
Volume of part of cylinder which rise because of
Submerging the cuboid = volume of cuboid.

Volume of part of cylinder=1331

$$
\begin{aligned}
& \pi r^{2} h=\frac{22}{7} \times 14 \times 14 \times h=1331 \\
& h=\frac{1331 \times 7}{22 \times 14 \times 14}=2.1606 \mathrm{~cm}
\end{aligned}
$$

