Grade $10^{\text {th }}$ CBSE

Triangles - Similarity

Q1) A perpendicular drawn from the vertex of the right angle of a right-angled triangle divides the triangle into two triangles similar to each other and also to the original triangle. Prove it.

Q2) In given figure,
$\angle Q P S=\angle R P T$ and
$\angle P R Q=\angle P T S$.
i) Prove that triangles PQR and PST are similar.
ii) If PT : $S T=3$: find ratio between $Q R: P R$.

Q3) In given figure: $\mathrm{AB}\|C D\| E F$. Given that $\mathrm{AB}=7.5 \mathrm{~cm}, \mathrm{EG}=2.5 \mathrm{~cm}, \mathrm{CG}=5 \mathrm{~cm}$ and $\mathrm{DC}=$ 9 cm . Calculate (i) EF (ii) AC

Q4) Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Q5) In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitude.

Q6) A street light bulb is fixed on a pole 6 m above the level of the street. If a woman of height 1.5 m cast a shadow of 3 m , find how far she is away from the base of the pole?

Grade $10^{\text {th }}$ CBSE

Solutions : Triangles - Similarity

Sol1) To prove $\triangle D B A \sim \triangle D A C \sim \triangle A B C$
Proof: In triangle $\triangle D B A$ and $\triangle A B C$

Statement	Reason
$\angle A B D=\angle A B C$	common
$\angle A D B=\angle C A B$	Each 90°
$\therefore \triangle D B A \sim \triangle A B C$	By AA Criterion

In triangle $\triangle D A C$ and $\triangle A B C$

Statement	Reason
$\angle A C D=\angle A B C$	common
$\angle A D C=\angle C A B$	Each 90°
$\therefore \triangle D A C \sim \triangle A B C$	By AA Criterion

Now,
$\therefore \quad \triangle D B A \sim \triangle D A C \sim \triangle A B C \quad[\because \triangle D B A \sim \triangle A B C$ and $\triangle D A C \sim \triangle A B C]$

Hence Proved.

Sol.2) i) To Prove $\triangle P Q R \sim \triangle P S T$

Proof: In triangle $\triangle P Q R$ and $\triangle P S T$

Statement	Reason
$\angle Q R P=\angle S P T$	Each angle equal to $\angle x+\angle S P R$
$\angle P R Q=\angle P T S$	Given
$\therefore \triangle P Q R \sim \triangle P S T$	By AA Criterion

Hence Proved.

ii) To prove $Q R: P R=4: 3$

Proof:
Since corresponding sides f similar triangles are in proportion.
$\therefore \frac{Q R}{S T}=\frac{P R}{P T} \Rightarrow \frac{Q R}{P R}=\frac{S T}{P T}=\frac{4}{3} \quad$ [Given, $\frac{P T}{S T}=\frac{3}{4}$]
Hence $Q R: P R=4: 3$

Hence Proved.

Sol.3) (i) In triangle $\triangle E G F$ and $C G D$.
$\angle E G F=\angle C G D \quad$ [vertically opposite angles]
$\angle E F G=\angle F D C \quad$ [Alternate interior angles]
$\therefore \triangle E G F \sim \triangle C G D \quad[$ by AA postulate]
$\frac{E G}{C G}=\frac{E F}{C D} \quad$ [corresponding sides of similar triangles are proportional]
$\frac{2.5}{5}=\frac{E F}{9} \therefore E F=4.5 \mathrm{~cm}$
(ii)) In triangle $\triangle A B C$ and $E F C$.
$\angle A B C=\angle E F C \quad$ [corresponding angles]

$\angle B A C=\angle F E C \quad$ [corresponding angles]
$\therefore \triangle A B C \sim \triangle E F C \quad[b y A A$ postulate]
$\frac{A C}{E C}=\frac{A B}{E F} \quad$ [corresponding sides of similar triangles are proportional]
$\frac{A C}{2.5+5}=\frac{7.5}{4.5} \therefore A C=12.5 \mathrm{~cm}$

Sol. 4) Draw $A D$ and $P S$ as medians of triangles $\triangle A B C$ and $\triangle P Q R$
To prove
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P S^{2}}$
Proof:
Triangles $\triangle A B C \sim \triangle P Q R$
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}$

In triangle $\triangle A B D$ and $\triangle P Q S$

Statement	Reason
$\angle B=\angle Q$	Corresponding angles of similar triangle.
$\frac{A B}{P Q}=\frac{B D}{Q S}$	$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{2 B D}{2 Q S}=\frac{B D}{Q S}$
$\therefore \triangle A B D \sim \triangle P Q S$	By SAS Criterion

Hence $\frac{A B}{P Q}=\frac{A D}{P S}$
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{A D^{2}}{P S^{2}}$

Hence Proved.

Sol.5) To prove $3 A B^{2}=4 A D^{2}$
Proof:
Let $\triangle A B C$ is an equilateral triangle with AD as altitude, which bisect base BC at point D.

By Pythagoras Theorem,
$A B^{2}=A D^{2}+B D^{2}$
$A B^{2}=A D^{2}+\left(\frac{B C}{2}\right)^{2}$
$A B^{2}=A D^{2}+\frac{B C^{2}}{4}$
$A B^{2}=A D^{2}+\frac{A B^{2}}{4} \quad[A B=B C]$

$3 A B^{2}=4 A D^{2}$
Hence Proved.

Sol.6)
In triangle $\triangle A B C$ and $\triangle P Q C$

Statement	Reason
$\angle B=\angle Q$	90°
$\angle C=\angle C$	common
$\therefore \triangle A B C \sim \triangle P Q C$	By AA Criterion

hence,

$\frac{A B}{P Q}=\frac{C B}{C Q}=\frac{C B}{C B+Q B}$
$\frac{1.5}{6}=\frac{3}{3+x} \quad \Rightarrow x=9 m$

