CBSE Grade $9^{\text {th }}$

Surface area and Volume

Q1) An open thermocol box 70 cm long, 55 cm wide and 30 cm high. Is made of 1.5 cm thick thermocol sheet. Find capacity and volume of box. Find volume of thermocol used. Find weight of box if $1000 \mathrm{~cm}^{3}$ of thermocol weight 10 gm .

Q2) If a gift seller placed an order for making cardboard boxes of size $18 \mathrm{~cm} x$ $15 \mathrm{~cm} \times 3 \mathrm{~cm}$. If 5% of the total surface area is required extra for all overlaps and the cost of cardboard is $₹ 5$ for $1000 \mathrm{~cm}^{2}$. Find the cost of cardboard required to make 200 such boxes. If all the boxes are bordered with beautiful ribbons, find the length of ribbon required.

Q3) A well of inner diameter 14 m is dug to a depth of 18 m . Earth taken out from it is used for its embarkment 7 m . Find the height of embarkment so formed.

Q4) A cloth having area of $189 \mathrm{~m}^{2}$ is shaped into the form of a conical circus tent of radius 6 m .
i) How many spectators can sit inside it, if on an average, each spectators occupies $\frac{8}{7} \mathrm{~m}^{2}$ on ground?
ii) Find Slant height and height of Tent
iii) If on average each spectators needs $15 \mathrm{~m}^{3}$ of air. Is this tent is big enough to accommodate 20 spectators.
(round to one decimal places when required)

Q5) A hollow sphere of external and internal diameter 8 cm and 4 cm respectively is melted into cone of base diameter 8 cm . Find the height of cone.

Q6) The volume of two spheres are in ratio 64:27. Find the ratio of their surface areas.

Solutions

CBSE 9th Surface area and Volume

Sol.1) External Length of box $=70 \mathrm{~cm}$
External breadth of box $=55 \mathrm{~cm}$
External height of box $=30 \mathrm{~cm}$
Volume of box $=70 \times 55 \times 30=1,15,500 \mathrm{~cm}^{3}$

Internal Length of box $=67 \mathrm{~cm}$
Internal breadth of box $=52 \mathrm{~cm}$
Internal height of box $=28.5 \mathrm{~cm}$
Capacity (Internal Volume) of box $=67 \times 52 \times 28.5=99,294 \mathrm{~cm}^{3}$

Volume of thermocol used = External Volume - Internal Volume $=1,15,500$ $-99,294=16,206 \mathrm{~cm}^{3}$

Weight of box $=\frac{16206}{1000} \times 10=162.06 \mathrm{gm}$

Sol.2) Length of box $=18 \mathrm{~cm}$
Breadth of box $=15 \mathrm{~cm}$
Height of box $=3 \mathrm{~cm}$
Total surface area $=2(l b+b h+h l)$

$$
=2(18 \times 15+15 \times 3+3 \times 18)=2(270+45+54)=738 \mathrm{~cm}^{2}
$$

$=$ TSA of extra cardboard required for overlapping $=\frac{5}{100} \times 738=36.90 \mathrm{~cm}^{2}$
TSA of total cardboard required for one box $=738+36.90=774.9 \mathrm{~cm}^{2}$
TSA of total cardboard required for 200 such box $=774.9 \times 200=1,54,980 \mathrm{~cm}^{2}$

Cost of cardboard for 200 boxes $=\frac{1,54,980}{1000} \times 5=₹ 774.90$

Ribbon required for bordering $=$ perimeter of top + perimeter of bottom +4 vertical edges
$=\{2(I+b)+2(I+b)+4 h\}=4(I+b)+4 h=4(I+b+h)=4(36)=144 \mathrm{~cm}$ or 1 m 44 cm

Sol.3)

Volume of earth dug = Volume of well

$$
\begin{aligned}
& =\left(\pi r^{2} h\right) \\
& =\frac{22}{7} \times 7 \times 7 \times 18=2772 m^{3}
\end{aligned}
$$

External radius of embarkment $=14 \mathrm{~m}$
internal radius of embarkment $=7 \mathrm{~m}$
let height of embarkment $=h$

Volume of embarkment = Volume of embarkment with external radius Volume of embarkment with internal radius

$$
\begin{aligned}
& =\left(\frac{22}{7} \times 14 \times 14 \times h-\frac{22}{7} \times 7 \times 7 \times h\right) \\
& \quad=\left(\frac{22}{7} \times 14 \times 14-\frac{22}{7} \times 7 \times 7\right) \mathrm{h} \\
& \quad=22 \times 7 \times(4-1)=22 \times 7 \times 3=462 \mathrm{hm}^{2}
\end{aligned}
$$

Volume of embarkment = volume of earth dug
$462 h=2772$
$h=6 m$

Sol.4)
i) Base area of tent $=\pi r^{2}$
$=\frac{22}{7} \times 6 \times 6=\frac{792}{7}=113.14 \mathrm{~m}^{2}$
Visit scorecents.in for more such worksheets.

Space occupied by each spectator $=\frac{8}{7} \mathrm{~m}^{2}$
Number of spectators $=\frac{792}{7} \times \frac{7}{8}=99$
ii)

Curved surface area of cone $=$ area of cloth
Curved surface area of cone $=\pi r l$
$\frac{22}{7} \times 6 \times l=189 \mathrm{~m}^{2}$
$l=10.02=10 m$
$h=\sqrt{\left(l^{2}-r^{2}\right)}$
$\sqrt{\left(10^{2}-6^{2}\right)}=\sqrt{64}=8$

Volume of Cone $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times 6 \times 6 \times 8=301.71 \mathrm{~m}^{3}$
No. of spectators it can accommodate $=\frac{301.71}{15}=20.11$
Yes, it can accommodate 20 spectators.

Sol.5) External Radius $=4 \mathrm{~cm}$
Internal radius $=2 \mathrm{~cm}$
Volume of material of sphere $=\frac{4}{3} \pi\left(4^{3}-2^{3}\right) \mathrm{cm}^{3}$
$=\left(\frac{224 \pi}{3}\right) \mathrm{cm}^{3}$

Volume of cone $==\frac{1}{3} \pi r^{2} h=\left(\frac{224 \pi}{3}\right) \mathrm{cm}^{3}$
Radius of cone $=4 \mathrm{~cm}$
$\frac{1}{3} \pi 4^{2} h=\left(\frac{224 \pi}{3}\right)$
$\frac{1}{3} \pi 16 h=\left(\frac{224 \pi}{3}\right)$
$h=14 \mathrm{~cm}$

Sol.6) Let the radius of two sphere be r_{1} and r_{2} respectively.
Let volume of two sphere be V_{1} and V_{2} respectively.
$\frac{V_{1}}{V_{2}}=\frac{64}{27}$
$\frac{64}{27}=\frac{\frac{4}{3} \pi r_{1}{ }^{3}}{\frac{4}{3} \pi r_{2}{ }^{3}}$
$=\frac{r_{1}{ }^{3}}{r_{2}{ }^{3}}=\frac{64}{27}=\frac{4}{3}$
Let surface area of two sphere be S_{1} and S_{2} respectively.
$\frac{S_{1}}{S_{2}}=\frac{4 \pi r_{1}{ }^{2}}{4 \pi r_{2}{ }^{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}=\frac{16}{9}$
Hence, $S_{1}: S_{2}=16: 9$

