CBSE Grade 9th

Quadrilaterals

Q1) Prove that diagonals of parallelogram bisect each other.

Q2) In figure PQRS is a parallelogram, and X, Y are the points on the diagonal QS such that SX = QY. Prove that

i)RXPY is a parallelogram.

ii) $\Delta PSX \cong \Delta RQY$

iii)PX = RY and RX = PY

Q3) In figure, ABCD is a trapezium in which $AB \parallel DC$ and P, Q are the mid points of AD and BC respectively. DQ and AB when produced meet at E. Also AC and PQ intersect at R. Prove that

- (i) DQ = QE
- (ii) AB || *PR*

(iii) AR = RC

Q4) E is the mid point of a median AD of $\triangle ABC$ and BE is produced to meet AC at F. Show that AF = $\frac{1}{3}AC$.

Q5)Prove that quadrilateral formed by internal angle bisector of a parallelogram is a rectangle.

Q6)In figure, $\triangle ABC$ is isoceles with AB = AC. D, E, F are the mid points of sides BC, CA, and AB respectively. Show that the line segment EF is bisected by AD.

Solutions

CBSE Grade 9th

Quadrilaterals

D

0

С

В

Sol.1)

In $\triangle AOB$ and $\triangle COD$, we have

AB = CD

 $\angle OAB = \angle OCD$

and $\angle OBA = \angle ODC$

 $\therefore \ \Delta AOB \ \cong \Delta COD$

Hence, OD = OB and OA = OC (c.p.c.t)

Sol.2)

i) Join RQ, meeting SQ at O.

Since diagonals of quadrilateral bisect each other OS = OQ and OP = OR

Given SX = QY,

 $\therefore OX = OY$

OP = OR

Diagonals of quadrilateral PXRY, XY and PR bisect each other hence, PXRY is a parallelogram.

ii) In ΔPSX and ΔRQY

PS = RQ (opposite sides of parallelogram PQRS)

PX = RY (opposite sides of parallelogram PXRY)

SX = QY (Given)

Visit scorecents.in for more such worksheets.

Hence $\Delta PSX \cong \Delta RQY$ By SSS

iii) PX = RY (opposite sides of parallelogram PXRY)

PY = RX (opposite sides of parallelogram PXRY)

Sol.3) Given AB *DC* and P, Q are the mid points of AD and BC respectively.

In ΔDCQ and ΔBEQ

CQ = BQ

 $\angle DQC = \angle BQE$ (vertically opposite angles)

 $\angle DCQ = \angle BEQ$ (alternate interior angles)

 $\therefore \Delta DCQ \cong \Delta BEQ$

 $\therefore PQ \parallel AB$ (c.p.c.t)

i) In $\triangle ADE$ P is the mid point and $PQ \parallel AB$

 \therefore Q is the mid point of DE (converse of mid point theorem)

Hence, DQ = QE

ii) AB || PR :: AB || PQ and R lies on PQ

iii) In $\triangle ACB$ Q is the mid point and $QR \parallel AB$

 \therefore R is the mid point of AC (converse of mid point theorem)

Hence, AR = RC

Sol.4)

Draw DG || EF

In $\triangle ADG$, *E* is mid point and DG || EF \therefore *F* is mid point of AG, i. *e* AF = FG In \triangle FBC, *D* is mid point of BC, and DG || EF \therefore *G* is mid point of CF, i. *e* CG = FG Thus, AF = FG = CG Hence $AF = \frac{1}{3}AC$

Visit scorecents.in for more such worksheets.

Sol5)

ABCD is a parallelogram. AD $\parallel BC$ and AB $\parallel DC$

 $\angle DAB + \angle BAD = 180^{\circ}$ $\because consicutive angles of parallelogram$ $\therefore \angle DAF + \angle ADG = 90^{\circ} \because DF and DG are angle bisectors$ $\therefore \angle AED = 90^{\circ} \because angle sum property.$ $\therefore \angle GEF = 90^{\circ} \because vertically opposite angles$ Similarly, $\angle GHF = 90^{\circ}, \angle HFE = 90^{\circ}, \angle HGE = 90^{\circ}$

Sol6)

In $\triangle ABC$, D and E are mid points. $\therefore DE \parallel BA$ and $DE = \frac{1}{2}BA = FA$ \therefore mid point theorm In $\triangle AFO$ and $\triangle DEO$ DE = FA $\angle DEO = \angle AFO$ (Alternate angles) $\angle EDO = \angle FAO$ (Alternate angles) Hence, $\triangle AFO \cong \triangle DEO$ by ASA rule Hence AO = DO by CPCT

Hence, AD bisects FE.

