Grade $6^{\text {th }}$ CBSE

Congruence of Triangles

Q1) State whether the statement true or false. Give reasons.
i) All equilateral triangles are congruent.
ii) Two circles with equal area are congruent.
iii) All squares with equal side are congruent.

Q2) If $\triangle P E T$ and $\triangle C A N$ are congruent under correspondence:
$P E T \leftrightarrow N A C$, then write the parts of
$\triangle P E T$ that correspond to $\angle P, \angle E, T E$ and $P E$.

Q3) $A B C D$ is a parallelogram with $A C$ as its diagonal. Are the two triangles formed by the diagonal congruent? Give reason. Is $\angle B A C=\angle D C A$?

Q4 Without drawing the triangles, state the correspondence between the sides and the angles of following pairs of congruent triangles.
i) $\Delta M N R \cong \triangle G V K$
ii) $\Delta M N R \cong \triangle V K G$

Q5) Find three pairs of corresponding parts to ensure that $\triangle P Q O \cong \triangle S R O$ fig(i)

Fig(ii)

Q6 It is given that $L M=M N, Q M=M R, M L \perp P Q$ and $M N \perp P R$. Prove that $P Q=P R$.

Answer Key

Sol1)
i) False. All equilateral triangles have equal angles, but they may have unequal sides. Following are two equilateral triangles with unequal sides.

ii) True. All circles with equal area will have equal radius. All circles with equal radius are congruent.
iii) True. All angles of a square are equal (90 degree). If sides are equal, then these squares are congruent.

Sol2) $\angle P \leftrightarrow \angle N, \angle E \leftrightarrow \angle A, T E \leftrightarrow C A$ and $P E \leftrightarrow N A$
Sol3)

Equal Parts	Reason
$\mathrm{AB}=\mathrm{CD}$	Opposite sides are equal in parallelogram
$\mathrm{AD}=\mathrm{CB}$	Opposite sides are equal in parallelogram
$\mathrm{AC}=\mathrm{CA}$	Common side
$\triangle A B C \cong \triangle C D A$	By SSS criterion
$\angle B A C=\angle D C A$	CPCT

Sol4)
i) $\triangle M N R \cong \triangle G V K$

$$
\angle M \leftrightarrow \angle G, \angle N \leftrightarrow \angle V, \angle R \leftrightarrow \angle K, M N=G V, N R=V K \text { and } M R=G K
$$

ii) $\Delta M N R \cong \Delta V K G$

$$
\angle M \leftrightarrow \angle V, \angle N \leftrightarrow \angle K, \angle R \leftrightarrow \angle G, M N=V K, N R=K G \text { and } M R=V G
$$

Sol 5)

Equal Parts	Reason
$\mathrm{PO}=\mathrm{SO}$	given
$\angle \mathrm{PQO}=\angle \mathrm{SRO}$	given
$\angle \mathrm{POQ}=\angle \mathrm{SOR}$	Vertically opposite angles
$\angle \mathrm{QPO}=\angle \mathrm{RSO}$	By angle sum property
$\triangle P O Q \cong \triangle S O R$	BY ASA

Sol6) Draw a imaginary line PM

Equal parts	Reason
$\mathrm{LM}=\mathrm{NM}$	Given
$\mathrm{QM}=\mathrm{RM}$	Given
$<\mathrm{L}=<\mathrm{N}$	90degree Given
$\Delta Q M L \cong \Delta R M N$	By RHS
$\mathrm{LQ}=\mathrm{NR}$	CPCT-------1
$\mathrm{PM}=\mathrm{PM}$	Common side
$<\mathrm{L}=<\mathrm{N}$	90 degree given

$\mathrm{LM}=\mathrm{NM}$ (hypotenuse)	Given
$\Delta P L M \cong \triangle P N M$	RHS
$\mathrm{PL}=\mathrm{PN}$	By CPCT--------2

By 1 and 2
$P Q=P R$ hence proved

