Grade 6th CBSE Congruence of Triangles

Q1) State whether the statement true or false. Give reasons.

i) All equilateral triangles are congruent.

ii) Two circles with equal area are congruent.

iii) All squares with equal side are congruent.

Q2) If ΔPET and ΔCAN are congruent under correspondence:

PET ↔ *NAC*, then write the parts of ΔPET that correspond to $\angle P$, $\angle E$, *TE* and *PE*.

Q3) ABCD is a parallelogram with AC as its diagonal. Are the two triangles formed by the diagonal congruent? Give reason. Is $\angle BAC = \angle DCA$?

Q4 Without drawing the triangles, state the correspondence between the sides and the angles of following pairs of congruent triangles.

i) $\Delta MNR \cong \Delta GVK$

 $ii)\Delta MNR \cong \Delta VKG$

Q5) Find three pairs of corresponding parts to ensure that $\Delta PQO \cong \Delta SRO$ fig(i)

Q6 It is given that LM= MN, QM = MR, ML \perp PQ and MN \perp PR. Prove that PQ=PR.

Answer Key

Sol1)

i) False. All equilateral triangles have equal angles, but they may have

unequal sides. Following are two equilateral triangles with unequal sides.

ii) True. All circles with equal area will have equal radius. All circles with equal radius are congruent.

iii) True. All angles of a square are equal (90 degree). If sides are equal, then these squares are congruent.

Sol2) $\angle P \leftrightarrow \angle N, \angle E \leftrightarrow \angle A, TE \leftrightarrow CA and PE \leftrightarrow NA$

Sol3)

Equal Parts	Reason
AB =CD	Opposite sides are equal in
	parallelogram
AD = CB	Opposite sides are equal in
	parallelogram
AC=CA	Common side
$\Delta ABC \cong \Delta CDA$	By SSS criterion
$\angle BAC = \angle DCA$	СРСТ

Sol4)

i) $\Delta MNR \cong \Delta GVK$

 $\angle M \leftrightarrow \angle G, \angle N \leftrightarrow \angle V, \angle R \leftrightarrow \angle K, MN = GV, NR = VK and MR = GK$

$ii)\Delta MNR \cong \Delta VKG$

 $\angle M \leftrightarrow \angle V, \angle N \leftrightarrow \angle K, \angle R \leftrightarrow \angle G, MN = VK, NR = KG and MR = VG$

Sol 5)

Equal Parts	Reason
PO= SO	given
∠PQO =∠SRO	given
$\angle POQ = \angle SOR$	Vertically opposite angles
∠QPO= ∠RSO	By angle sum property
$\Delta POQ \cong \Delta SOR$	BY ASA

SC

Sol6) Draw a imaginary line PM

Equal parts	Reason
LM=NM	Given
QM = RM	Given
<l <n<="" =="" td=""><td>90degree Given</td></l>	90degree Given
$\Delta QML \cong \Delta RMN$	By RHS
LQ = NR	CPCT1
	Common side
PM = PM	
<l <n<="" =="" td=""><td>90 degree given</td></l>	90 degree given

SCORECENTS	
LM = NM (hypotenuse)	Given
	RHS
$\Delta PLM \cong \Delta PNM$	
PL = PN	Ву СРСТ2

By 1 and 2

PQ = PR hence proved