CBSE Grade 7 Triangle and its Properties

Q1) Is it possible to have a triangle with following property. If yes, then draw. If No, then give reason.
i) With two obtuse angles?
ii) With two Altitudes?
iii) With altitude outside the triangle?
iv) With measure of sides as $2.2 \mathrm{~cm}, 3.6 \mathrm{~cm}$, and 6 cm ?
v) With two right angles?

Q2) The square of the hypotenuse of an isosceles right-angled triangle is $242 \mathrm{~cm}^{2}$. What is the length of each equal side?

Q3) One of the exterior angle of a triangle is 110° and the interior opposite angles are in the ratio $4: 7$. Find the angles of the triangle.

Q4) A ship leaves a port and travels 12 km due east. Then it turns and travels 9 km due north. How far is the ship from the port?

Q5) The diagram shows a simple device in which $A M B$ is a straight rod and $C M$ is a rod pivoted at M with $\mathrm{AM}=\mathrm{BM}=\mathrm{CM}$. Find $\angle A C B$ if $\angle C A M=$ 65° and $\angle B M C=130^{\circ}$.

Q6) Two poles 15 m and 30 m high stand upright in a playground. If their feet are 36 meters apart, find the distance between their tops.

Q7) $A B C D$ is a quadrilateral. Is $A B+B C+C D+D A>A C+B D$?

Answer Key

Sol 1)

i) No, sum of angles will exceed 180°.
ii)Yes, Any Right-angled triangle.
iii)Yes, Any Obtuse Triangle.
iv) No, $2.2+3.6<6$
v) No, sum of angles will exceed 180°.

Sol 2) Given, $x^{2}+x^{2}=242$

$$
\begin{aligned}
& 2 x^{2}=242 \\
& x^{2}=\frac{242}{2} \\
& x^{2}=121 \\
& x=\sqrt{121}=11
\end{aligned}
$$

Sol 3) $4 x+7 x=110$
(\because Measure of exterior angle is equal to sum of two interior opposite angles.)
$11 x=110 \Rightarrow x=10 \therefore$ angles are 40° and 70°
Sol 4)

$$
\begin{aligned}
& 12^{2}+9^{2}=x^{2} \\
& 144+81=x^{2} \\
& 169=x^{2}
\end{aligned}
$$

$x=13$ Ship is 13 km far from the port.

Sol 5) $\angle C A M=65^{\circ}$ and $\angle B M C=130^{\circ}$
$\angle B M C=\angle C A M+\angle A C M$
$130=65+\angle A C M \therefore \angle A C M=65^{\circ}$ \qquad 1

In isosceles $\triangle C M B, \angle M C B=\angle C B M$
$\angle A M C=\angle M C B+\angle C B M \Rightarrow 2 \angle M C B=50 \Rightarrow \angle M C B=25=\angle C B M$
$\therefore \angle A C B=65+25=130^{\circ}$

Sol6)
$A B$ and $C D$ are two poles then,

$A B=30 \mathrm{~m} C D=15 \mathrm{~m}$

Draw line CP //BD

$$
\mathrm{AP}=15 \because A B=30, P B=C D=15
$$

By pythagores theorem

$$
\begin{aligned}
& A P^{2}+P C^{2}=A C^{2} \\
& 15^{2}+36^{2}=A C^{2} \\
& 225+1296=A C^{2}
\end{aligned}
$$

$$
1521=\mathrm{AC}^{2}
$$

$$
39 \text { = AC }
$$

Sol 7)

Sol)
In Tr ADC and Tr ABC
AD + CD >AC -------3 ${ }^{\text {rd }}$ property $\quad------1$
$A B+B C>A C------3^{\text {rd }}$ property $\quad------2$
In Tr DCB and Tr DAB
$C D+B C>B D-----3^{\text {rd }}$ property \qquad

$A B+A D>B D------3^{\text {rd }}$ property
$1+2+3+4$
$A D+C D+A B+B C+C D+B C+A B+A D>A C+A C+B D+B D$
$2 \mathrm{AB}+2 \mathrm{BC}+2 \mathrm{CD}+2 \mathrm{AD}>2 \mathrm{AC}+2 \mathrm{BD}$
$2(A B+B C+C D+A D)>2(A C+B D)$

